Shortest Reconfiguration of Perfect Matchings via Alternating Cycles

نویسندگان

چکیده

Motivated by adjacency in perfect matching polytopes, we study the shortest reconfiguration problem of matchings via alternating cycles. Namely, want to find a sequence which transforms one given another such that symmetric difference each pair consecutive is single cycle. The equivalent combinatorial path polytopes. We prove NP-hard even when graph planar or bipartite, but it can be solved polynomial time outerplanar.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cycles and perfect matchings

Fan Chung and Ron Graham (J. Combin. Theory Ser. B 65 (1995), 273-290) introduced the cover polynomial for a directed graph and showed that it was connected with classical rook theory. M. Dworkin (J. Combin. Theory Ser. B 71 (1997), 17-53) showed that the cover polynomial naturally factors for directed graphs associated with Ferrers boards. The authors (Adv. Appl. Math. 27 (2001), 438-481) deve...

متن کامل

Perfect matchings and Hamiltonian cycles in the preferential attachment model

We study the existence of perfect matchings and Hamiltonian cycles in the preferential attachment model. In this model, vertices are added to the graph one by one, and each time a new vertex is created it establishes a connection with m random vertices selected with probabilities proportional to their current degrees. (Constant m is the only parameter of the model.) We prove that if m ≥ 1,260, ...

متن کامل

Perfect matchings (and Hamilton cycles) in hypergraphs with large degrees

We establish a new lower bound on the l-wise collective minimum degree which guarantees the existence of a perfect matching in a k-uniform hypergraph, where 1 ≤ l < k/2. For l = 1, this improves a long standing bound by Daykin and Häggkvist [4]. Our proof is a modification of the approach of Han, Person, and Schacht from [8]. In addition, we fill a gap left by the results solving a similar ques...

متن کامل

On Perfect Matchings and Hamiltonian Cycles in Sumsof Random

We prove that the sum of two random trees almost surely possesses a perfect matching and the sum of ve random trees almost surely possesses a Hamiltonian cycle.

متن کامل

Perfect matchings extend to Hamilton cycles in hypercubes

Kreweras’ conjecture [1] asserts that any perfect matching of the hypercube Qd, d ≥ 2, can be extended to a Hamilton cycle. We prove this conjecture.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: SIAM Journal on Discrete Mathematics

سال: 2022

ISSN: ['1095-7146', '0895-4801']

DOI: https://doi.org/10.1137/20m1364370